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Kingman Coalescent

For each n ≥ 1, let En = {1, 2, ..., n} and En denote the collection of equivalence
relations of En. Each element of En is thus a subset of En × En. For example, in
the case of n = 3, the set

{(1, 1), (2, 2), (3, 3), (1, 3), (3, 1)}

defines an equivalence relation that results in two equivalence classes {1, 3} and
{2}. The set En is clearly finite and its elements will be denoted by η, ξ, etc.

In genetic applications, the equivalence relations are defined through the
ancestral structures. Two individuals are equivalent if they have the same ancestor
at some time t in the past. For ξ, η in En, we write ξ ≺ η if η is obtained from ξ by
combining exactly two equivalence classes of ξ into one. For distinct ξ, η in En, set

qξη =

{
1, ξ ≺ η
0, else.
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Let |ξ| be the number of equivalence classes induced by ξ. Define

qξ := −qξ,ξ =

(
|ξ|
2

)
.

Definition: Kingman’s n-coalescent is a En-valued, continuous-time, Markov
chain Xt with infinitesimal matrix (qξη) starting at X0 = {(i, i) : i = 1, ..., n}.
Kingman’s coalescent corresponds to the limit process as n tends to infinity.

Let D(t) = |Xt|.

Then Dt is a pure-death process with death rate

lim
h→0

h−1P{D(t+ h) = k − 1 | D(t) = k} =

(
k

2

)
, k ≥ 2.

Replace
(
k
2

)
with n(n+ θ− 1)/2 leads to Kingman’s coalescent with mutation.
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Tavaré’s Formula

Let t > 0, λm = m(m−1+θ)
2 and (a)k = a(a+ 1) · · · (a+ k − 1). Set

dθn(t) = P{D(t) = n}, ρm(t) = (−1)m(2m− 1 + θ)e−λmt.

It is obtained in Tavare [5] that for n ≥ 1

dθn(t) = (−1)n
∑
m≥n

ρm(t)

(
m
n

)
(n+ θ)(m−1)

m!
.

For n = 0,

dθ0(t) = 1 +

∞∑
m=1

ρm(t)(θ)(m−1)m!.
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Bayesian Nonparametrics

Consider a random variable X with distribution depending on parameter θ.
In Bayesian statistics, the parameter is modelled as a random variable Θ. This
reflects the basic principle of Bayesian statistics: all forms of uncertainty should be
expressed as randomness.

The distribution Q of Θ is called the prior distribution.

Under a Bayesian model, data is generated in two stages, as

Θ ∼ Q
X1, X2, . . . |Θ ∼ iid with common distribution PΘ.

Here the sequence X1, X2, . . . is conditionally i.i.d. or exchangeable.

The main objective is then to determine the posterior distribution, the
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conditional distribution of Θ given the data,

Q{Θ ∈ ·|Xi = xi, i = 1, . . . , n}.

This corresponds to parameter estimation in the classical approach.

A Bayesian nonparametric model is a Bayesian model with infinite dimensional
parametric space.

Examples include the space of probability measures and the space of probability
density functions.
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An Example

For any θ > 0, let U1, U2, . . . be a sequence of iid random variables with
common distribution Beta(1, θ). Set

V1 = U1, Vn = (1− U1) · · · (1− Un−1)Un, n ≥ 2.

Let S be Polish space and ν0 a probability on S. The Dirichlet process (first
appeared in Ferguson [4]) with parameters θ, ν0 is the random measure

Ξθ,ν0 =

∞∑
i=1

Viδξi.

where ξ1, ξ2, . . . are i.i.d. with common distribution ν0 and is independent of
{Vi}i≥1. Denote the law of Ξθ,ν0 by Πθ,ν0.

Clearly Ξθ,ν0 belongs to an infinite dimensional space. Thus Πθ,ν0 can serve as
a nonparametric prior.
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Fleming-Viot Process With Parent Independent Mutation

Let S be a compact metric space, C(S) be the set of continuous functions on
S, M1(S) the space of probability measures on S equipped with the usual weak
topology, and ν0 a diffuse probability in M1(S). Consider operator A of the form

Af(x) =
θ

2

∫
(f(y)− f(x))ν0(dy), f ∈ C(S).

Define

D = {u : u(µ) = f(〈φ, µ〉), f ∈ C∞b (R), φ ∈ C(S), µ ∈M1(S)},

where 〈φ, µ〉 is the integration of φ with respect to µ and C∞b (R) denotes the
set of all bounded, infinitely differentiable functions on R. Then the Fleming-
Viot process with parent independent mutation (FV process) is a pure atomic
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measure-valued Markov process with generator

Au(µ) = 〈Aδu(µ)/δµ(·), µ〉+
f ′′(〈φ, µ〉)

2
〈φ, φ〉µ, u ∈ D,

where

δu(µ)/δµ(x) = lim
ε→0+

ε−1{u((1− ε)µ+ εδx)− u(µ)},

〈φ, ψ〉µ = 〈φψ, µ〉 − 〈φ, µ〉〈ψ, µ〉,

and δx stands for the Dirac measure at x ∈ S.

Theorem 1. (Ethier [1]) The Fleming-Viot process with parent independent
mutation is reversible with the Dirichlet process Πθ,ν0 as the reversible measure.
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Transition Function:

The probability transition function of the Fleming-Viot process has the form

P (t, µ, d ν) = dθ0(t)Πθ,ν0(d ν)

+

∞∑
n=1

dθn(t)

∫
Sn
µn(d x1 × · · · × d xn)Πn+θ, n

θ+nηn+ θ
θ+nν0

(d ν).

where

ηn =
1

n

n∑
i=1

δxi.

A natural connection to Bayesian nonparametrics is the fact that
Πn+θ, n

θ+nηn+ θ
θ+nν0

turns out to be the posterior distribution of Dirichlet process

Πθ,ν0 given a sample of Xi = xi, i = 1, . . . , n.
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New Results in Favaro, F and Jenkins [3]

Main Questions

1 How to makes use of the observed sample of individuals to infer quantities
related to the genealogy of an additional unobservable sample?

2 How many non-mutant lineages would one expect a time t ago if the initial
observable sample is enlarged by certain number of unobservable samples?

3 How many of these non-mutant lineages have small or large frequencies?
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Distributional Identity for Dm(t)

For any m ≥ 1, let Dm(t) denote the pure death process in the Kingman
m-coalescent.

For any n ≥ 1 let (Z∗1 , . . . , Z
∗
n) be independent random variables identically

distributed according to a non-atomic probability measure. For any m ≥ 1, let
Xm = (X1, . . . , Xm) be a random sample from a Dirichlet process with atomic
base measure θν0 +

∑
1≤i≤n δZ∗i .

The random variables (Z∗1 , . . . , Z
∗
n) denote the genetic types of the ancestors.

The composition of the sample Xm can be described as follows. We denote by
{X∗1 , . . . , X∗Km} the labels identifying the Km distinct types in Xm which do not
coincide with any of the atoms Z∗i ’s.
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For any j = 1, . . . , n, let

Mj,m =
∑

1≤i≤m

1{Z∗j }(Xi)

denote the number of Xi’s that coincide with the atom Z∗j , and Mm =
(M1,m, . . . ,Mn,m). Introduce the random variable

Rn,m =

n∑
i=1

1{Mi,m>0}. (1)

It is clear that Rn,m denotes the number of distinct types in the sample Xm that
coincide with the atoms Z∗i ’s.
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Theorem 2. For any m ≥ 1 let Xm be a sample from a Dirichlet process with
atomic base measure θν0 +

∑
1≤i≤n δZ∗i , for n ≥ 0. Then, for r = 0, . . . ,min(n,m)

P[Rn,m = r] = r!

(
n
r

)(
m
r

)
(θ + r)(m−r)

(θ + n)(m)
.

Furthermore,

Dm(t)
d
= RD(t),m

for each t > 0, where {D(t) : t ≥ 0} is the death process of the cardinality of
Kingman’s coalescent starting from infinity.

Kingman’s Coalescent on the left hand side is represented
through the posterior distribution on the right.
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Refined Distributional Identity

Noting that the process Dm(t) describes the non-mutant lineages surviving
from time 0 to time t (Griffiths [2]). For any l = 1, . . . ,m, let Dl,m(t) denote the
number of non-mutant lineages having frequency l. Define

Rl,n,m =

n∑
i=1

1{Mi,m=l}.

In orther words Rl,n,m denotes the number of distinct types in Xm that coincide
with the atoms Z∗i ’s and have frequency l. From the discussion above it is clear
that, given D(t) = n, Dl,m(t) has the same distribution as Rl,n,m. Thus we obtain
that

Dl,m(t)
d
= Rl,D(t),m,

Note that the random variable Dl,m(t) represents a natural refinement of Dm(t) in
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the sense that

Dm(t) =

m∑
l=1

Dl,m(t).

Theorem 3. For any m ≥ 1 let Xm be a sample from a Dirichlet process
with atomic base measure θν0 +

∑
1≤i≤n δZ∗i , for n ≥ 0. Then, for r =

0, . . . ,min(n, bm/lc)

P[Rl,n,m = r] =
m!

(θ + n)(m)

min(n,bm/lc)∑
i=r

(−1)i−r
(
i
r

)(
n
i

)
(θ + n− i)(m−il)

(m− il)!
,

where min(n, bm/lc) denotes the minimum between n and the integer part of m/l.

– Typeset by FoilTEX – 17



Conditional Distributional Identities

Let Xm be a sample from a Dirichlet process with atomic base measure θν0 +∑
1≤i≤n δZ∗i and, for any m′ ≥ 0, let Xm′ = (Xm+1, . . . , Xm+m′) be an additional

sample. More precisely Xm′ may be viewed as a sample from the conditional
distribution of the Dirichlet process with base measure θν0 +

∑
1≤i≤n δZ∗i , given

the initial sample Xm. We denote by Mj,m′ =
∑

1≤i≤m′ 1{Z∗j }(Xm+i) the number

of Xm+i’s that coincide with the atom Z∗j , and we introduce the random variable

Rn,m+m′ =

n∑
i=1

1{Mi,m+Mi,m′>0},

which denotes the number of distinct types in the enlarged sample Xm+m′ =
{Xm,Xm′} that coincide with the atoms Z∗i ’s. Similarly we introduce the following
random variable

R̃l,n,m′ =

n∑
i=1

1{Mi,m′>0}1{Mi,m=l}.
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Theorem 4. For any m ≥ 1 and m′ ≥ 0 let Xm+m′ be a sample from a Dirichlet
process with atomic base measure θν0 +

∑
1≤i≤n δZ∗i , for n ≥ 0. Then one has

(i) for x = y, . . . ,min(n, y +m′)

P[Rn,m+m′ = x |Rn,m = y] = (x− y)!

(
n−y
x−y
)(

m′

x−y
)
(θ +m+ x)(m′−x+y)

(θ + n+m)(m′)
;

(ii) for x = 0, . . . ,min(y,m′)

P[R̃l,n,m′ = x |Rl,n,m = y] =

(
y
x

)
(θ + n+m)(m′)

×
y∑

i=y−x
(−1)i−(y−x)

(
x

y − i

)
(θ + n+m− i(1 + l))(m′).
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Therefore, Rn,m and Rl,n,m are sufficient to predict Rn,m+m′ and R̃l,n,m′,
respectively.

A direct application of this result leads to

P[Dm+m′(t) = x |Dm(t) = y]

=
(my )( m

′
x−y)(θ+y)(x−y)(m+m′+θ)(y)P[Dm+m′(t)=x]

(m
′+m
x )(θ+m)(x)P[Dm(t)=y]

for any x = y, . . . ,m+m′ and each t > 0.

Generalizations to refined distributions involving frequencies can also be obtained
in similar manner.
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[5] Tavaré, S.: Line-of-descent and genealogical processes, and their applications
in population genetics models. Theor. Popul. Biol. 26, (1984),119–164.

– Typeset by FoilTEX – 21


